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Localization Lengths and Boltzmann Limit for the
Anderson Model at Small Disorders in Dimension 3
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We prove lower bounds on the localization length of eigenfunctions in the
three-dimensional Anderson model at weak disorders. Our results are similar
to those obtained by Schlag, Shubin and Wolff, [J Anal. Math. 88 (2002)], for
dimensions one and two. We prove that with probability one, most eigenfunc-
tions have localization lengths bounded from below by O ﬁ , where A is
the disorder strength. This is achieved by time-dependent methods which gen-
eralize those developed by Erdds and Yau [Commun. Pure Appl. Math. LIII:
667-753 (2003)] to the lattice and non-Gaussian case. In addition, we show that
the macroscopic limit of the corresponding lattice random Schrédinger dynam-
ics is governed by a linear Boltzmann equation.

KEY WORDS: Anderson model; hydrodynamic limits; localization lengths; ran-
dom Schrodinger operators; weak coupling limit; quantum kinetic theory.
1. INTRODUCTION

The Anderson model in dimension d is defined by the discrete ran-
dom Schrodinger operator

1
(Hop)(x) = =5 (AY)(x) + Ao ()Y (%),

acting on ¢%(Z4), where A is a small coupling constant, accounting for the
strength of the disorder.

(AY)(x):=2dy(x)— Y Y(y)

lx—yl=1
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is the nearest neighbor lattice Laplacian, and w(x) shall, for x € Z¢, be
bounded, i.i.d. random variables. In the present paper, we study the case
d =3, and prove that with probability one, most eigenfunctions of H,
A—i) In contrast to
log +

d=1,2, we note that there are no restrictions on the energy range for the
validity of this result. Furthermore, we derive the macroscopic limit of the
quantum dynamics in this system, and prove that it is governed by the lin-
ear Boltzmann equations.

The present paper is closely related to work of Erdés and Yau,®
in which the weak coupling and hydrodynamic limit has been derived
for a random Schrédinger equation in the continuum RY, d =2, 3, for
a Gaussian random potential. For macroscopic time and space variables
(T, X), microscopic variables (z, x), and the scaling (X, T)=A?(x, 1), where
A is the coupling constant in the continuum analogue of H,, these authors
established in the limit A — 0 that the macroscopic dynamics is governed
by a linear Boltzmann equation, and thus ballistic, globally in T > 0. We
note that the corresponding local in T > 0 result was first proved by
Spohn.®) For a time scale larger than O(A~2), Erdds, et al. have very
recently succeeded in establishing that the macroscopic dynamics in d =3
is determined by a diffusion equation.®)

The problem addressed in the present paper is, on the other hand,
closely related to recent work of Schlag er al.® Based on techniques of
harmonic analysis, it was established in ref. 8 for the Anderson model at
small disorders in d =1,2 that with probability one, most eigenstates are
in frequency space concentrated on shells of thickness <A ind=1, and <
2279 in d =2. The eigenenergies are required to be bounded away from the
edges of the spectrum of —%Azd, and in d =2, also away from its center.
By the uncertainty principle, this implies lower bounds of order O(1~2) in
d=1, and O(A~**%) in d =2, on the localization lengths in position space.
Closely related to their work are the papers by Magnen et al>-® and
by Poirot(?, which address properties of the Greens functions associated
to H,.

The proof the main results in the present paper uses an extension
of the time-dependent techniques of Erdés and Yau® to the lattice, and
to non-Gaussian random potentials. Higher correlations, which are now
abundant, are shown to have an insignificant effect, hence the charac-
ter of our results does not differ from that obtained in the Gaussian
case. Furthermore, bounds on the amplitudes of certain Feynman dia-
grams of “crossing” structure are much harder to obtain in the lattice
than in the continuum model, due to the significantly more complicated

have localization lengths bounded from below by 0(
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geometry of energy level surfaces. We have adapted part of our notation
and nomenclature to ref. 3, in order to facilitate the referencing of results.

The link between the lower bounds on the localization lengths of
eigenfunctions, and the Schrodinger dynamics generated by H, is a joint
result with Erdés and Yau included in this paper. The author is deeply
grateful to them for their support and generosity.

2. DEFINITION OF THE MODEL AND STATEMENT OF THE MAIN
THEOREM

We consider the discrete random Schrodinger operator
1

acting on ¥ € £2(Z3). The impurity potential is given by

Vo)=Y wydx—y), )

y€Z3

where w, are bounded, independent, identically distributed random
variables, of mean 0, and normalized variance. For each x € Z3, wy is a
random variable on a single site probability space (J, F, u), where J is a
Borel subset of R with [J|:=sup,, , s l@—@'| <00, F is the o-algebra of
Borel subsets of J, and w is a probability measure on F. V,, is a random
field over Z* realized on the probability space (22, F,P), with Q= x3J,
where F is the o-algebra generated by the cylinder sets induced by F, and
the probability measure P is given by x,3u. For simplicity, we assume p
to be even, u(I)=u(—I), for all I € F. Then, E[w?"1=0VxeZ3, Vm >0.
This reduces some of the notation in our analysis, but for our methods to
apply, only E[w,]=0 is necessary. Clearly, E[w?"]<|J|*" for all m, but we
shall here use the moment bounds

Elw;"]|=:ém < @m)lcy, &=1, VxeZ’ Vm>1, 3)

for a constant cy < oo which is independent of m and |J|. This allows for
a generalization of our results to cases of unbounded random variables,
which we expect to be straightforward. We shall here not further discuss
the latter issue.
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We use the convention

FRO=F(HK) =3 ez e 270 f(x),

“4)
2 =F () (x) = [ dk g(k)e* k>
for the Fourier transform and its inverse. Then,
(AfY(k)y=—2en(k) f (k).
(5)

en(k):=3"3 | (1 —cosQmk;)) =23";_, sin® (wk;)

is the expression for the kinetic energy in frequency space.
Let L>>A_2, and Ay :=[-L, L]3HZ3. For meNj and £ R with m <
LKL, let

1 if0<m <
he(m):=12— 2 if &l <m< el
0 otherwise

3 (6)
Ke(o):=[ [ hellx;D

j=I
Rise(y):=K¢(x—y)— Kse(x —y).

We remark that K, is a product of differences of Fejér kernels, and
that for xe Ap and § >0, R, s5¢(y) is an approximate characteristic func-
tion supported on a cubical shell of side length 2¢ centered at x, and
thickness (1 —38)£.

The author thanks Yau and Erdds for the following observation,
which is the key to linking the localization length of eigenvectors to the
dynamics generated by H,. For a fixed realization of the random poten-
tial, let {wéL)} denote an orthonormal basis in £2(Ay) of eigenfunctions of
H, restricted to Ay,

(Hy— ey =0 on A, and .
=0 on dAL:=Ari\AL

for
OZEAL :={1$"'$ |AL|}
(®)

et(f) eR.
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For ¢ small, let

A(L‘f;” = {a | Z [y O | Ry s, vl ||£z(AL) <e } CAL. 9)

xelAp

Then, {1/05“}“6 A@ contains the class of exponentially localized eigen-

states concentrated in balls of radius 0(15%) or smaller, where we empha-
size that § is independent of £. The additional factor log¢ in the denomina-
tor compensates a volume factor O (¢£3/2), which arises due to the fact that
|1p0((L) (x)| appears only linearly, and not quadratically in the sum. Our main

result is the following theorem.

Theorem 2.1. Assume L>> A2, and that {1//0(1“} is an orthonormal
H,,-cigenbasis in 2(Ap), satisfying (7) with « € Ay, and e‘(f‘) €R. Then, for
AT <8 <1 and g5:=487,

(@)
|AL\A}

,85,5,)»‘2|

>1—Csir—ca~2L!
[ALl - '

for finite constants C that are uniform in L, §, A. Furthermore,

JANAY ]
P | liminf —— L9272 S 4 sty | =1
L—o00 ALl

for A > 0 sufficiently small, and a finite constant C that is uniform in A
and §.

We note that in contrast to the results for dimension d =1, 2 estab-
lished in ref. 8, there is no restriction in dimension 3 on the range of val-
ues of e&L). Furthermore, we emphasize that the correction to the lower
bound of order O(L72) on the localization length is only logarithmic,
while the bound obtained in ref. 8 for d =2 is of order O(A~%*¢), for any
e>0.

3. PROOF OF THE MAIN THEOREM

Key to Theorem 2.1 is the following lemma, which establishes a link
between the localization length of eigenvectors of H, and the dynamics
generated by H,,.
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Lemma 3.1 (Joint with L. Erdés and H.-T. Yau). Let {wéL)} denote
an orthonormal basis in £2(Ay), consisting of eigenvectors of H,, satisfy-

ing (7), and assume that 1 < £ < L. Let

ALaM _‘AL\ALEBZ’

and suppose that there exists 7 >0, such that for all x € Z3,

E [” Ry s0e” Mo, ||4212(Z3)] >1-¢

is satisfied for some ¢=¢(8, ¢, t) > 0. Then,

1@
p| Mread | oy 5t cppo
| AL

for a constant C which is independent of ¢, L, .

Proof. We have

Se= Y atyd
o

ay = (‘Sx’ (L)> w(L)(X),

so that in particular,

18112, = D lasP=1.

ac Ay

By the Schwarz inequality, we get

. 2
HRx,S,le_”Hw‘sx
2(Ap)
1 2
s £
n
aEA(La,)Z,M £aw
2
+(1+77)HRx,5,ee_”H“ Z afy it
£2(Ap)

1 (@)
a€A; 5

(10)

(11)

(12)
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For the first term on the r.h.s., we find

2

—itH, L
HR Yty

(w)
a€A; 5

W
nys’e Z e it a?wa(lL)

()
a€A; 5.

< D0 WP R0 | 2a,) - (13)

(w)
D(EAL;:,S,@

E(AL)

<

B ‘

£2(AL)

using the a priori bound

2
HRx,s,ee_”H“ > ary
2
O‘E‘A(La‘);é'.é chw
) 2
—it L
| = e
£2(AL)

(w)
acA; s

= > lafP<t, (14)

()
acA;" s

which follows from |Rys¢llcc = 1, orthonormality of {wé[L)}ae A, on

¢2(Ayr), and (11). For the second term on the r.h.s. of (12), we likewise
find

2
HRx,s,ze_”H” Z aly P
- 2
aE'A(La,)Z*.S.Z En
(L) 2
< ’ Z e lea a? wc(tL)
- 2
“EA(Lgfl,a,z cen
2
= 2l
O‘EA(L&,)Z,M
L 2
= Z B ()2 (15)

1(@)
a€A; s
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Averaging over x € Ar, we have

|A | Z HRX‘SZe o 5 ||l2(AL)

xeAL

(1+n)m Yo > wPwr

0le_}ﬁi(w) st xeAp

1
#(1e )M Y Y WP R Lo,

()  xeA
AL,S,B,Z L

(@)
= (1 +n) |A | |AL ,6,8,0

1 1
1) X R s,y 00

(@) xeA
a€A; 5 L

Let
SM,L::{x\ inf |x—y|<2e} (17)
yedAL

and [\L :=Ap\ Sz, such that R, s NdAL =0 VXGZ\L. Then,

|AL| 2 R s [,

xeA

|A ¥ Z | Re,5,07 " e, ”62(23 +o@¢L™h (18)
L

by compactness of the support of Ry s .. By definition of .A(Lwl 5.¢» the last
term in (16) is bounded by (1 +%)s. Thus, recalling that |Ap|=|ALl,

T(w)
AL e 5.0 > 1

—i 2
= E Ry s.0e itHy g ;
|AL| 1+n |AL| - ” X x”zZ(Z?)
XEAL
1
_H'E -l
e—clL™!. (19)
147

Taking expectations, using (10), and choosing n:e%, the claim follows. |
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Lemma 3.2. Under the same assumptions as in Lemma 3.1,

AL 5l |
P|liminf —=——>1—-2¢2 [=1. 20
[‘LJOO 1ALl ¢ (20)

Proof. We consider the family of translation operators 7y 1@y > wx4y,
for x € Z3, which acts ergodically on the probability space (2, F, P).(D

Let U;, denote the unitary translation operator (U ¢)(y) =¢(x +y)
on ¢%(Z3). Then, clearly,

1
U*H Uq;)L _EA_’_)‘V—):(U:H'LX(D (21)

with Vi, (y) = Vy(x +y), and

tH,
AL |x§ | Res.ee” g, HZZ(Z3)
=_ Z ”( Ry S,ZU'[X)(U.:CC‘_”H(DU‘[X)(SO ”?2(23)

xeA

> [Rosce™ bl @

|A I
xeAyp

by unitarity of U, . By the Birkhoff-Khinchin ergodic theorem, applied to

the random variable X (w):=|/Rg s ce "8y Hiz(%), we obtain, for fixed A,

hggﬂ— > IRos.ce™ 80 [fa g = [ | Ros.ce ™00 o)
XEAL

(23)

with probability one. We note here that clearly, the left hand side of (10)
is independent of x € Z3. Therefore, (10), (19) and (23) imply

a)) 1
o (Lsse| n 2"'5
P|{liminf ——————>1— —— — e|l=1, 24
|:L—>oo ALl 1+n 1+7n (24)

and choosing n:s%, the claim follows. |
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From here on, we will write || - |,=]| - le2(z3)-
To conclude the proof of Theorem 2.1, we use the key Lemma 3.3
below, which provides the lower bound

E[|R, gsm2e ™ Hes, 3] 21— 87 (25)

. 6 14 .
for the choice (8, A) =872, A5 <8 <1, and a constant ¢ that is inde-

pendent of x, A and 8. Thus, choosing & :8%, (25) immediately implies
Theorem 2.1.

Lemma 3.3. Let
18, 1) =872, (26)

and Hy:= —%A. Then, for A sufficiently small, 0 <8 <1, and all x €Z3, the
free evolution term satisfies

|R, 5526 OPHOs | > 1—C57 27)

X,0,

while
B[Ry -2 [e7"OPH — G Ms | T < 85 467827 (28)

for finite positive constants C, C’ that are independent of x, A and §.

Proof. We may assume that x=0. Let
ly:=0, L1:=6¢L. (29)

We recall that (R075’5)2:Kl22 — 2Ky, +K€21. To bound ||K,e™"H0g |15, we
note that
‘e—ireup)_f dkkgz(p—k)e_iteA(k)‘
T3

<C sup ’e—iteA(p)_e—iteA(k)‘
lp—kI<y

42 [ dkiRe @)1=k > )

<Cyt+Cy~legt, (30)
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owing to

w

|Kez<k>|\c1"[ [ dkeo=1. (31)

1+ ||k %65

where ||r||z :=dist(r, Z) for r € R, which are basic properties of the Fejér
kernel. Thus, with

1
(=002, =272, y=17247 (32)
we find
(30) < C57 . (33)

Hence,

—itH 2 —itea(p) NE
H’%e ’ O‘SOHZZ/ dp‘e Heatl +0(87)
T3

>1-C87. (34)

Next, we consider

HlKe 2™ ”H°50H = Z |Ke, ()] [(e7"H050) (35)
yeZ3
where a=1, 2, and
(e_itHOSO)(y)Z\/ dke—i(leA(k)—ijky) . (36)
']T3

We observe that the kinetic energy ea : T2 — [0, 6] is a real analytic Morse
function with eight critical points in the corners of the subcube [0, %]3 C
T3=[0, 1]?. Each of the remaining critical points in [0, 1]*\ [0, %]3 is iden-
tified with one of the latter by symmetry. The Hessians are diagonal and
have entries of modulus 472,

We bound |(36)| by a stationary phase estimate. For |y| < C¥y, ¢ =

A2 and r=8%1"2, it is clear that

Viea—2mt"Hy, - NEH=0 (37)



290 Chen
implies
|Vea (k*)| <C8' ™.

It follows that for each of the eight critical points of ea, there is precisely
one k* satisfying (37) in its 8! %-vicinity, given that 8~ is sufficiently
small. Correspondingly, Hess[eA](k*) is in each of these cases non-degen-
erate, with eigenvalues of modulus O(1).

We introduce a smooth partition of unity > ¢; =1 on [0, 1P, je
{1,...,8}, continued over the boundary of by periodicity, in a manner that
each supp¢; is centered at one critical point of ex. By the above, a sta-
tionary phase estimate yields

sup
yesuppKe,

Z/ dk ¢ (kyeier®=2mk0 | < 032
— JT3
J

Consequently,
135)| < Ceir3=cs31-o), (38)

and optimizing the bounds, we find o= g.

Our strategy to prove (28) employs a modification of the methods of
Erdos and Yau from ref. 3. Thereby, we invoke a Duhamel expansion with
remainder term, and control the expectation by classifying all contraction
types occurring in the products of the random potential. The remainder
term is bounded by exploiting the rarity of the event that a large number
of collisions occurs in a small time interval.

As a result, we obtain

B[Ry gu2[e™H =705 3] < CLaZr+17 (39)

for a constant C; that is independent of x, A and §. This implies (28) for
the asserted choice of ¢. The proof of (39) will occupy Sections 3.1-3.7. I

3.1. Expectation of Products of Random Potentials

We shall to begin with consider the expectation of products of ran-
dom potentials. The pair correlation is given by the Kronecker delta

]E[wxl wxz] = Sx],xz ,
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and we recall that by our assumptions on wy, the m-point correlation is
zero for any odd m. The fourth order correlation yields

E[w (Do (x)o(x3)w(xs)]
= (1 - 5x1,X3)8x1,x2 8)(3,)54 + (1 - 8x1,x2)6x1,X3 6)62,)64

+(1 — 3x1 ,x3)5x1 ,x48x2,x3 + 548961 ,X28X3>X48x1 43 (40)
= 5x1 ,x25x3,x4 + le ,X3 8x2~x4 + le *x48x2’x3
SNGHSE Y R N R “h

The operation applied in passing from (40) to (41) will be referred to as
Wick ordering. By a renormalization of the fourth order moment of w,,

Gy — cq =4 — 383

(where ¢, =1), it decomposes (40) into independent terms.

For the Fourier transformed random potentials o(k):=) ", wye2Tikx
one obtains exact Dirac delta distributions for the Wick ordered expres-
sion (41),

E[d(k)d(ka)a(ks)d(ks) ]
=8(ky + k)8 (k3 +ky) +8(ky +k3)8 (ko +k4)
+8(k1 +ka)8 (ko +k3) +cad(ky + ko + k3 +ka).

We note that this is not the case for the individual summands in (40) prior
to Wick ordering. The same statement applies to all higher order correla-
tions.

The Wick ordered product of an arbitrary even number of random
potentials is determined as follows. We introduce, for n,n’ € N with 7 :=
%”/ €N, the set

V,,,n/:z{l,...,n,n—i—Z,...,n—i—n’—i—l}.

In our later discussion, V, , labels a linearly ordered set of n+n’ ran-
dom potentials that are, in frequency space, subdivided into a group of
n’ copies of V,, and a group of n copies of V,, (the complex conjugate).
The label n+ 1 excluded here is reserved for a distinguished point that is
not attributed to a random potential. We note again that the case n+n’ ¢
2Np+1 is trivial since all odd moments of V,, vanish.
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Definition 3.1. For i1 = ”E”/ eN, let

M= {{S, 1151 €28 _US,,S NS;=0if j#) }/6

m=1

denote the set of partitions of V, , into disjoint subsets S; (referred to as
blocks) of size |S;| € 2N, where &,, is the m-th symmetric group. Two par-
titions 7w ={S;}"" T T _{S/ "y, are equivalent, 7 =z’ if 30 € G,, such
that §; = S’ o () for all je {1 ,m}. A partition & € I, ,, will also be
referred to as a contraction (corresponding to contractions among random
potentials).

The number of = €11, ,+ consisting of m blocks is given by
Bji(m)

:n[{sj}';;]‘[njsj_ Vaw: I1S;1€2N: 5 NS _®1f17é]}/
j=1

=2ﬁ: > D Smliida g

r=1 1< j1,....jr<n 1<l <<, <t
Qi)! 1
X T - )
(@)Y (LY (i) -+ GrD

(42)

where j:=(j1,...,jr), ljli=2 i1 ji» and (j,1):=>"i_; jil; for every r.
Here, j; is the number of blocks of size 2/;. The factor L, arises because
the order is irrelevant, according to which blocks of the same size are
counted. We note that the number of partitions into products of pair cor-
relators (that is, r=1, j=n, [=1) is

Bi()=1-3---Qia—1)<2"@)).
On the other hand, it is clear that
Q2i)! ”;
Bimy< > byym o =m",
s Lai=1"1 ... |
051 v <2 ) o)
hence for non-pairing contractions, i.e. m <1,

n—1 }
Z B (m) <2t

m=1
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This trivial estimate will suffice for our purposes.
For SCV, s, with |S|€2N, we define

§xs)i=Y ]

yez? j€S

where xg:=(x;)jes. Then,

IE[ I Vw(xj)}z

jEVn,n’

-

rrel'[

T= {Sj }m

X 1_[ (1 _qu(,-),xﬂ(j)): (43)

1<i<j<m

> (]_[E|s_,|a(x5_,))
j=1

where for definiteness, (i) := min {q|q € S,-} (clearly, one could choose
any arbitrary element of S;). Due to the second product, the factors in
[1cis;8s; are not independent. We note that

8 (5,08 (05081305 =0 (Xs5;U5; ) » (44)

where of course, |S; U S;| = [S;| 4+ |S;|. Therefore, expanding [](1 —
Sx,yxu(y) 10 (43), using (44) recursively, and collecting all terms belong-
ing to the same blocks, we find

IE[ I V(xj):| Z > JJessts). (45)
n=1 n j=I

jGV /

n,n

n,n
7={S;¥j_

where the cumulant formula

kK k
=32 2 D midgn
m=1r=11<j1,....Jr <k 1<} <...<l, <k

—hmten ) d

@Y (@) G- Gr)
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determines the renormalized moments of w,. Thus, (45) decomposes the
expectation value into the sum of all possible products of correlators,
which are now mutually independent. We observe that by (3),

o2l < 2Rk Xk: Z ey Yo
wcan( T o) T )
i Gih - Ge) Ll el <k

k .
(ke‘v)r
<(2k)!2k; -
a1 QO ey
k _k! e
< Qe yHAT, (46)

N

Then, the expectation of the full product of random potentials decom-
poses into

]E|: I1 \7w(kj)] Z > <1_[C|s ) (Zk,») (47)

JEV, m=1 nel'lnn i€S;
T={S;}I_

in momentum space, where c|g;| are the renormalized moments of w;.

3.2. Duhamel Expansion

Our aim is to prove the bound (28) by classifying and estimating the
integrals corresponding to all contractions occurring on the left hand side
of (28).

To this end, we invoke the Duhamel expansion of ¢; =e o5 . For
N eN large, which remains to be determined, it is given by

t
(eflle(Sx _efltH()ax)(y) — ((_l)\,)/ dse*l(l*S)Hw VweflSH()(Sx)(y)
0

N
=Y bni )+ R (). (48)

n=1

Writing

n n
|:1_[dsj:| ::ds0~odsn3<23j —t)
j=0 ! Jj=0
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for brevity, the Fourier transform of the nth Duhamel term is given by

n
bni (ko) = (—ik)"/ » [Hds,} /% Ziknx g~ Ljgsjen k)
R} i ()"
Jj=0 d

+

n
x ]_[ Vi (kj —kj_1)dk;
j=1

. . n
_ e’ (—ir)" f dae_i“’/ ik l—[ 1 .
2 R (T3)n eA(kj)—Ol—lS

j=0

< [ ] Votki —ki-v)dki (49)
=1

where we shall choose
e=t"1 (50)

in all that follows. « is an energy parameter, and the multiplication opera-
tors W are the Fourier transformed resolvents of —%A (which will
also be referred to as particle propagators). The explicit formula for the
remainder term Ry, can be found in (144) below.

We note that in this analysis, e=7"! and A will be the small param-
eters of the theory, which will ultimately be related through & =CAx2.

Let H_:={z eC|Im(z) < 0}. The integrand is analytic in «, and it is
not hard to see that the path of the «-integration can, for any fixed neN,
be deformed away from R into the closed contour

I=IrUly_ (51)
with

In =[-1,7]
In = (~1,71—)HU(=1—i(0, 1) U(7—i(0, 1)) CH_,

which encloses spec| — A —ie} =[0, 6] —ie. Consequently,

n P et —)x n i .
bn.s (ko) = w/dae_“”/ dky - - - dky e knx

2 I (']1‘3 y

n 1 n A
X|:l_[ W} va(kl —ki—1).

j=0
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where the loop I is taken in the clockwise direction.
Using the Schwartz inequality,

Lh.s. of (39) <26 | icﬁn,; HEED L]

n=1

_ ’
For 1<n,n’ <N, and n:="#- €N, we have

gzat)\'ZH

E [((bn/,tv ¢n,t>] = W

/ dodBe@=P)
IxI

n

n/
('ﬂ*3)2ﬁ+2

j=01=0

n n 1 1
% HHeA(kj)—a

j=01=0

XIE|:1_[ 1_[ ‘A/w(kj —kj—l)‘}w(lzl —ki—1)

j=11=1

—ie eA(lzl)—,B-i-ié‘

Chen

(52)

(33)

where 7 is the complex conjugate of I, and taken in the counterclockwise

direction by the variable 8.
Introducing new variables

B = (p()a"'7pﬂ7pn+17"'?p27_l+1)
= (lzn/ﬂ-"7£07k07"‘7kn)

and

N CAY) 0<j<n
(“f"’f)—{(ﬁ,—l) n<j<2n+1,

(54)
(55)

(56)
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we can write

281)\215

]E[<¢n’,tv ¢n,t)] = ¢ _/1 I_dadlge*il(afﬂ)

(2m)?
2n+1 1

dp8(pn—
X/ars)zm p8(pn pn+1)]1:£

ean(pj)—aj—ioje

2n+1
XE[ 11 Vw([?i—Pi—l)}_zm(”o_pz’”')“, (57)
idntl

noting that V (k) =V (—k).
Let w :{Sj}’;’:1 €Il, , denote a partition. Let

8s,(p) :=8<Z(pi—pi_1)>

lESj

and

S2(p):=]]0s,(p).

j=1

Then, the contribution to (57) corresponding to 7 is given by the singular
integral

et 2n
et it la—
Amp[r] = —/ _dadpBe it ﬁ)/ ~ dpd(pn—Dput1)
T I (T3)2"+2

x1 -

m
x e~ 2T (po—pait1)-x (l_[ €18 |> 8z (p)

=1
2n+1 1

, 58
j=0 ea(pj)—aj—ioje (58)

referred to as the (Feynman) amplitude corresponding to 7. The expecta-
tion (57) is obtained from summing the amplitudes Amp[r] over all par-
titions w €11, .
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3.3. The Graph Representation of Contractions

To estimate the expectation (57), it is necessary to classify the singu-
lar integrals Amp[r], whose size depends on the structure of w. For this
combinatorial problem, it is natural to represent w, encoded in the delta
distributions §; in (58), by (Feynman) graphs. We shall use the following
prescription, cf. Fig. 1. We draw two parallel solid ‘particle lines’, joined
together at one end, accounting for §(p, — py+1), containing n, respectively
n’ vertices, where n +n’ € 2N. Every pairing contraction is depicted by a
dashed line joining the respective vertices. The higher correlation contrac-
tions corresponding to ds; are represented by |S;| € 2N dashed lines con-
necting the corresponding vertices to one mutual vertex that is disjoint
from the particle lines. Any (solid) edge that lies on a particle line refers
to a particle propagator.

Let G, denote the graph associated to a partition 7 ={S;}"_, €I,
The set of vertices of the graph G, is denoted by V(G,), and] the set of
edges as E(Gy). V(Gy) is the union V(Gy) = V,(Gr) U Vi (Gy), where
Vp(Gr) =V, is the n + n'-subset of vertices on the particle line, and
Vie(Gr) 1s the subset of vertices disjoint from the particle lines, which
are associated to correlations of higher order than two. In the product
of Kronecker deltas (45) in the position space picture, the elements of
V,(Gx) correspond to the sites x; of random potentials, while the elements
of Vjc(Gy) correspond to the dummy summation variables y;.

Definition 3.2. A contraction 7 ={S;}€TIl, , is called a pairing con-
traction if m =, so that |S;|=2 for all j. Otherwise, 7 is called a higher
(order) correlation contraction, or a type III contraction (cf. Definition 3.3
below).

It is in fact necessary to introduce the following finer classification of
families of contractions, see ref. 3.

Definition 3.3. The delta distributions associated to partitions 7 €
I, , of the set V, , are classified into the following types, according to
the corresponding subgraph structure. A delta distribution 85(p) =3(p; —
pi—1+pj—pj—1) associated to a pairing S with |S|=2is of

,ﬁ —=0 Py
I

o & Poi

Fig. 1. A graph containing type I, I, II, and III contractions.
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Tyee I if i, j <n.

Tyee U if i, j > n.

Type 11 if i <n, but j >n+2.

A delta function g is of

Type III if |S| >4, that is, if it is not associated to a pairing contraction.

Hence, a partition of V, , is of type III if it contains a type III delta
distribution.

Definition 3.4. A pairing contraction 7 €I, ,/ is called crossing if
8 contains two delta distributions §(p;; — p;,—1+ pj; — pj,—1) and 8(p;, —
Pir—1+Pj, —Pj,—1), With j. >i,, such that i; —i> and j; — j, have the same
signs.

Definition 3.5. A non-crossing pairing contraction w €I1,, , is called
nested if §; contains two delta distributions §(p;; — pi;—1 + pj, — Pj-1)
and 8(pi, — pi,—1 + pj, — Pj,—1), With j. >i,, both either of type I or of
type I, such that i; —i» and j; — j, have opposite signs.

Definition 3.6. A non-crossing and non-nested pairing contraction is
called simple. A simple pairing contraction is called a ladder graph if all
of its associated delta functions are of type II.

Assume 7 €I1,, v is a pairing contraction. A spanning tree 7 of G is
a connected tree graph that contains V(G,). We denote the set of edges
contained in T by E7, and refer to the corresponding momenta as tree
momenta. The momenta corresponding to the edges in the complement
E; =E7. are referred to as loop momenta. Adding any edge of E; to the
spanning tree 7 produces a loop.

Definition 3.7. A spanning tree 7 of G, with 7 ={Sj};f’:1 ell,, a
pairing contraction is called complete if it contains all contraction lines,
and the edge corresponding to the momentum p,, but not the one corre-
sponding to the momentum p,, .

3.4. Simple Pairing Contractions

It is our aim to estimate |Amp[n]| for each type of contractions 7 €
I, , listed above. We shall proceed by first discussing simple pairings,
then crossing and nested pairings, and finally type III contractions.

Similarly as in ref. 3, we will find that the amplitudes {Amp[n]\n simple}
completely dominate over those associated to all other contraction classes
(notably even in the presence of type III contractions).
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3.4.1. The Ladder Graph

The simplest member in the class of simple pairings in I, , is the
ladder graph. It corresponds to the pairing 7 ={S j};?zl €, ,, with §;=
{j,2n+2—j}, such that |S;|=2, and

p2et ) 2n it—p)
Amp[r] /1 dadpee /( dpS(pn— pust)
X

- 2n)? T3H2n+2 —
' 2n+1 1
x @2 (Po=P2nt1) X 1_[ :
1o ealp) —o—ioge
n
X H3<(Pj —pj—1)+(Pms2—j _p2n+1—j)> , (59)
j=1

cf. (58).
The following L™ and L' resolvent estimates will be used extensively
in the sequel.

Lemma 3.4. Let 0 <e <« 1. Then,

1
sup sup ————— < — (60)
a€l peT3 lea(p) —a —ig] &

—

1 1
sup/ dp—— < Clog -
wel JT3  lea(p) —a—ig] €

1 1
sup/|doe|—,<C10g—
peT3 1 lea(p) —a —iég| €

(61)

for finite constants C that are uniform in &.

Proof. Since by definition of I, infpeTa dist(ea(p) —ie, I) =¢, and
since || is finite, (60) and the second estimate in (61) are evident.

To prove the first estimate in (61), we first show that the measure of
the isoenergy surface

Sy = {peT|ea(p)=a)

is uniformly bounded with respect to & € I NIR. We note that for Im(«) #0,
the asserted bound is trivial. For p=(p1, p2, p3) € T3, let

exp(p)i= Y (I—cos2wp;), p:=(p1.p2) (62)
j=1.2
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denote the Fourier transform of the 2-D nearest neighbor Laplacian, and

sri={peTexp(p)=r} (63)

the corresponding level curves. Then,
mesis,)= [ dpbtea(p)=r) (64)
01?7 - -

is easily seen to be uniformly bounded,

supmes{s,} <C. (65)

Therefore,

1
mes{Xy } =/0 dp3A2d£8(ezp(£)+(l—00827TP3)—0!)
1
=2/ dk(l—kZ)—%/ dps(ern(p)+1—k—a)
0 ™ -

1
< 2/ dk(1 —kz)*% supmes{s,} < C, (66)
0 r
uniformly in «. Thus, defining
Rj(ot,e):={peT3‘2j8<6A(p)<2j+le}, 67)

we have

2 tlg

mes{Rj(a, 8)} = /

2ie

do! / dps(@ —ea(p))
T3

20+l
= / do'mes{Zy'}
2e |

< 2/ ¢ supmes{Ey} < C27¢ (68)

a’eR
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for a constant C that is independent of j, &, and «. Hence, introducing a
dyadic decomposition of T3 with respect to ea centered about %, we find

/ d ! < Z/ d ( !
lea(p) —a—ig| IR (@e) ea(p) —a—ie

mes{R;(a, &)}
ST
j

1
< Clog —, (69)
&

for0<j<Clog % and a constant C that is uniform in ¢ and «, as claimed. |

Lemma 3.5. Let

K(n)(p()a ey pnv t)
n
::/dso...dsn(S(t —Zsr)e_i Yi=osiea(p))
r=0
ie®! “ 1

_ —iat
—27T/;doee ’al_[

j=0

ea(pj)—a—ie ’

Then there exists a finite constant C,, for every 0 <u <1 such that

(Cu)"

CYINP:
KO0 sy < 0

(70)

Proof. Clearly,

” K(n)( ) t) ” LOO((T3)"+1)

t}’l
g/R’fl dson-dsn(S(t—Zsr):n—!.
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Furthermore,

|| K(n)( t) ” L2— ;L((’]ﬂ)nﬂ)

2—n

<C dpé do
/(TW P3(pn = pus1) / | |H

<cp = (71)

IeA(p])— a—ie|H

for a finite constant C,. The claim then follows from interpolation. [

We conclude that the ladder contribution can be estimated by

n
A2 /(T3)2n+2 dp l_[ 8(pi — P2nt1-i)
i=1

X K(n)(va sy pn’ I)K(n)(pn-f—l’ ceey P2n+ls t)

2\n
) NE (Curt)
PNKD s 2oy < R (72)

for 0 <u < 1. It is clear that the product of delta distributions appearing
here is equivalent to the one in (59).

3.4.2. Immediate Recollisions

We next estimate general simple pairings which include all possible
combinations of type I and I’ contractions. Given any type I or type I
delta function 8(p; — pi—1 + p; — pj—1) in a simple pairing graph, where
J >1, one necessarily finds i = j — 1. Otherwise, either a crossing or a nest-
ing pairing occurs. Hence, any type I or I’ delta function in a simple pair-
ing reduces to §(pjy+1 — pi—1), for some i.

Definition 3.8. A type I or type I’ pairing of the form §(p; 1 — pi—1)
is called an immediate recollision.

The subintegral in Amp[r] corresponding to an immediate recollision
is given by either

E(a, 8) = f _da (73)
T

3 epa(q) —a—ie
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or E(B, —e¢). It contributes to a renormalization of the particle propagator,
see ref. 3, and satisfies the following estimates, which will be of extensive
use.

Lemma 3.6. For €1,

supsup |E(a, ¢)| < C (74)
ael >0
and
10" E(a, £)| < Ce~ ™2 (1) (75)
|E(a, &) — (', 8)] < Ce™ja—a]| (76)

for finite constants C that are independent of m, ¢, a,a’, and m € N.

Proof. We recall that « € I =Ix U Iy from (51). The case a €Iy_ is
trivial. For a € I =[—1, 7], we write

E(a,86)= ds/ dp e islealp)—a—ie)
Ry T3

and recall that ea: T3 — [0, 6] is a real analytic Morse function with eight
critical points. We choose a smooth partition of unity 1=3"¢; on T, je
{1,...,8}, requiring that the support of each ¢; is centered about precisely
one critical point of ea, so that

E(a, &) = Z/ ds/3 dp¢;(p) e islea(p)—a—ie) (77)
T IRy T
Using a stationary phase estimate, we find

|E(a, &)| < Zc,- /R+dse—”(1+s)—%, (78)
j

where the constants C; are independent of ¢ and «. This proves (74).
Likewise,

vEe)=) | ds| dpg;(p)is) e AP (79)
o —~ Jr, T3 J
J
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Thus

02 B, &) < }chvt/’ dss"e ™ (145)73 (80)
iR

which implies (75), and for m=1, also (76). 1

3.4.3. General Simple Pairings

In a more general context, simple pairings comprise progressions of
neighboring immediate recollisions on each particle line before and after
each type II contraction. In this sense, simple pairings are ladder graphs
that are decorated with immediate recollisions on the propagator lines. Let
us assume that there are ¢ neighboring delta functions of type I, starting
at the particle propagator carrying the momentum p;. Then, Amp[n] con-
tains the corresponding subintegral

i+2q

1 q
dpit1---dpiq2 S E—— 3(Pit2j+1 = Pi+2j—1)
/(T3)2fl l e Em(m)—a—ze Jlj[l B B

E(a, e)!

" (ea(pi) —a—ig)tl’

The analogous expression for a progression of g neighboring delta func-
tions of type I is obtained from substituting « — 8 and ¢ - —s.

Let us consider a simple pairing 7 €I, , which contains m type II
contractions. Let

(m+1) = (qo, qls > qm) (S N81+1

q
and
1"V = qo 4+,

and, for n —n’=0 (mod 2),

Ay = {meNo‘m—nEO(modZ), mémin{n,n’}}. (81)
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The sum over all simple pairings at fixed n gives (after reindexing the
momentum variables)

Z Z )\.2m62€t 1 f})
Amp[r] = / dodBe™"@~
2 -
mell, meA, . (271) Ix1
7 simple
D DD VR IR
|q(m+l)|:”5m |é(m+1)|:n’gm (T
ﬁ (\E(a, &) (W2 E(B. —e)¥
X . . . o .
g ea(pi) —a—ie)i+! (ea(pi) — B +ig)at!
(82)
Let us comment on this expression, cf. Fig. 2. For i=1,...,m, p;_ is

the momentum preceding, and p; the momentum following the ith type II
pairing. Notably, a direct recollision conserves the momentum. For 1 <i <
m, gq; and g; are the numbers of neighboring type I and I’ pairings after
the ith type II contraction. gg and gy are the number of neighboring type
I and I’ pairings before the 1-st type II pairing.

Clearly, all n —m random potentials on each particle line not involved
in type II contractions are part of type I, respectively type I’ pairings
(immediate recollisions). Since each immediate recollision contracts pre-
cisely two random potentials, the sum over m takes steps of size 2, such
that m € A, . Therefore,

ety M (1)) — n'—m (83)

lg 7 lg 7

is clear. In particular, m =n=n’ corresponds to the ladder graph.

99 4
— > —
p L P I . M
n | } {1 1 LI—_I—&I {1 { Py
| | |
Pyl — 7=J—-| LLF - 7=J—-| LLF - 7=J—-| DI LLF - 7ﬁ ﬁ Pj
b = > —
99 4

Fig. 2. A simple pairing contraction graph.
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Lemma 3.7. For fixed n,n’ with i1:= "45"/ €N, the contribution of the
sum of all simple pairings is bounded by

) Z Amp[rr]‘

well, s simple

(Cokzg—l)ﬁ

a1 _ i
(ahl/2 +n282|10g8|(C£ 1A2|10ga|)", (84)

< Sn,n’

and for AZe~1 <1,

XNj) > Amplr]

T .
n,n’=1 mell, simple

<C1K2871+8%N3(C)\2871|10g8|)N, (85)
where C, Cy, Cq are uniform in N and &, and where Cy and C; are defined
in (96).

Proof. Let us assume for fixed n, n’ under the stated conditions that
w €ll, , is simple, and contains m type Il pairings. Let

Amp([r] = Ampmain[77] + Amperror[7] (86)

where

ezet)\zm —it(—p)
AmMpPain[7] 1= on? I_da dBe
x

x Z Z /(\’]1‘3)»#1 dpo---dpm

(1) | =02 = 1)) 0/ —
lg(n D=1 gn D

m

I1 (2 (ea(po). €)%  (A2E(ea(po), —e))d
(ea(pi) —a—ie)iitl (ea(pi) — B+ie)dit]

. (87)
i=0
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Then, recalling (81),

2£t)L2m

e —it(a—
Z AMPain[7] = Z W / dadBe it(a—p) (88)
mell, s simple meA, Ix1

< XX [ dvedn,

'11‘3)m+1
(m+1)|=n-m  ~ Dij_n'=m (
lg ‘ 2 \q('” )‘— 2'

m

I (A2E(ea(po). e)%  (A2E(ea(po), —e)¥
(ea(pi) —a—ie)titl (ep(p)) — B +ie)dit]’

i=0

(g;) .
Let p;"' =(pj, ..., p)) (q; copies), and dp™ D :=dpy---dpn.

We note that

m+n

m+n 1 m 1 2 (C t) 2
/ dp(m+l)‘K( 2 partD L plant P CuD T g
(TS)m+1 (mT-H'”)j
Thus, by the Schwarz inequality,
n+m 1 m 1
~/(A’I[‘3)m+1 dg(m+l)K( : )(pg()'i' ,...,P;In i ;t)
wimy o Gol Gm+1
x KD (plo L pin
m+n
(Ct) 2
= m+n 1 m4n’) I (90)
(F=ha (=D
Therefore,
22m(Ct)" T 2B (po; )"
e< Yy > T :
meA, v |q(m+1)|=% |q(m+l)|="/%m (mTJrn!)K (%!)Z
O
By
> 1<crr (92)

+1)j_n=m
lgm+D|=15



Localization Lengths and Boltzmann Limit 309

and Lemma 3.6,

‘ Z Amppain [ ]‘ < Z
mell, , simple meA,
CA%t)"

2o |
(n")?2

m+n

sz (C)‘(2)ﬁfm (CH 2

(mTJrn!)%(r%n’!)%

< S cit~ ()" (93)
for finite constants C that are independent of . The first term after the
second inequality sign accounts for the ladder graph in T, ,, correspond-
ing to the case m=n=n'=n, as we recall.

Next, we consider the error term

Z Amperror[r] _ dadp e te=h)

= 2
well, , simple (271’) IxI
D S
MEA, 1 |qm+D =151 |q(m+l)|=ﬂ/%m
m 1
% dp(m+1) : —
/('11‘3)"’“ - E)(eA(Pi)—a—IE)""“(eA(Pi)—,3+l8)‘1"+1

x [E(a, £) 7 E(B,—e) T —Elealpo),e) 2 E(ealpo), —e)"z'”]
(94)

Lemma 3.6 implies that difference in [---] on the last line is bounded by

o o
~lea(po) = BlJe~2CT

n/

n—m
[ leatpo) —al+

for a constant C independent of ¢. Thus, we arrive at

194)] <iie'? Y (Ca%e | loge)" (CA*e ™! |loge|) ™

meA, s

n,n

< ﬁzel/z(CX28_1|logs|)n.
again using (92).
Summarizing, we have

2, 1\ i
‘ Z Amp[n]‘ < Sn,n/w +ne(Ca?e™ )"

mell, s simple ()2

+i2e! (a2 logel)" (95)
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for some constant C(y. Furthermore, let

=) —. (96)
i=1 (n1)2
Then, for A2e~1<1,
N
S IE2I< a2 + 62N (CaZe loge) Y
n=1

where the constants Cy, Cq, C are uniform in N, A, . |

We remark that for general 7 :=A%r=A2¢~! > 1, the constant C; in
the above estimate would be replaced by C”, where C is uniform in A and
-1
e=t"".

3.4.4. A priori Bound on Pairing Graphs
All pairing graphs obey the following a priori bound.

. Lemma 3.8. Let 7w €I1,,» be a pairing graph, and n:= # e N.
Then,

|Amp[x]| < |loge*(CA%e ™! [loge|)" . 97)

Proof. For the detailed argument, we refer the reader to ref. 3. One
chooses a complete spanning tree 7 on 7, and estimates the propagators
supported on T in L. Using the bounds in Lemma 3.4, one obtains a
factor e~". The loop propagators are estimated in L', and yield a factor
(Clloge)™. 11

3.4.5. Crossing and Nested Pairings

We shall next prove that for all = €I1, ,, which contain a crossing or
. . . 1
nested pairing contraction, |Amp[r]| is a factor O(e3) smaller than the a
priori bound (97) on pairing graphs. This is sufficient to compensate the
factor n! accounting for the number of pairing contractions.
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Lemma 3.9. The sum of all crossing and nested pairing contractions
in I, (where i:="4" €N) is bounded by

3 |Amp[r]| <iles|loge3(Ci2e~ | loge))" .

mell, v crossing or nested

Proof. By lemmata 3.10 and 3.12 below, every pairing contraction
of crossing or nesting type can be bounded by

(€22 loge|) s 5| logel

and clearly, there are at most 2"7! such graphs. |

Lemma 3.10. Suppose that 7 €I, , corresponds to a pairing con-
traction that contains at least one crossing, and that i = "45” eN. Then,

|Ampir]| <e$(CaZe~!|loge)) | loge|®.

Proof. Let T denote a complete spanning tree for the graph Gy,
and T¢ its complement. As demonstrated in ref. 3, all momenta supported
on T can be expressed as linear combinations of loop momenta supported
on T°. If there exists a crossing pairing, it is shown in ref. 3 that there is a
tree momentum p, in T that depends on at least two loop momenta p;, p;
in T¢,

pr=+pjEp tw, (98)

where w €T3 is a linear combination of momenta not depending on p s Dl
Writing p = p;, ¢ = p;, and integrating out all delta distributions deter-
mined by 7 against momenta supported on 7, the amplitude Amp[z] can
be written in the form

2 2n
Amp[r]= & o dadpe™ 1@ P
= e Jia

X/mm dpdq[ I1 dp,,} Fr(pj €T a, Bi6)

pjeTf
Pj#p.q

1
“ea(p) —arLie) (en(q) —ar£ie)(ea(ptq+w)—aztie)

99)
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where o; € {a, B}, for i =1, 2,3, and |T¢| is the number of edges of T¢. F;
contains all resolvents except the three on the last line, which carry the
moments singled out in (98). Using an L! — L bound with respect to the
variables p, ¢ and «, B, we have

|[Amp[r]| < bRi supsup sup A.(w; «, B)

ael ge] weT?

Xsupf,xid“dﬂﬂqu_@[ [T dvs]Fatpiesa.p:2).

p’q l)jeTL'
Pj#EP4
(100)
where
Ag(w; a, B)
._ / dpdq
iy lea(p) —ar £igllealq) —ar Eigllea(ptq +w) —a3Eiel
(101)
It is clear that o; =« for at least one pair of indices i # j.
Using the trivial bound A.(w, «, 8) <cs’1(logé)2, one obtains
|Amp[r]| < [loge*(CA%e ™" loge])” (102)

which is the a priori bound (97) on all pairing graphs. It is insufficient because
the number of crossing graphs is O (i2!), and 71!| loge|3(CA%¢~!|loge|)” is not
summable in 2. Gaining an extra factor &3 will (in combination with our treat-
ment of the error term of the truncated Duhamel expansion) allow us to com-
pensate the large combinatorial factor 7!.

Exploiting the crossing structure of 7, Lemma 3.11 below provides
the bound

1 2
sup sup sup Ag(w, o, B) < Ce_% <log—) , (103)
&

weT3 ael el

L 1 .
which is a factor ¢35 smaller than the a priori estimate.

For the remaining part of Amp[r], excluding the propagators corre-
sponding to the indices n and n + 1, L*-bounds on propagators in 7, and
L'-bounds on propagators in 7¢, produce a factor (CA%¢~!|loge|)"~!. The
propagators corresponding to the indices n and n + 1 contribute a factor
(Cloge™")?, asin (134) below. A detailed exposition is given in refs. 2, 3. |
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Lemma 3.11. Let A.(w, @, B) be defined as in (101). Then,

1 2
sup sup sup Aq(w, @, B) < Cefg <log—> . (104)
>

weT3 ael gef

Proof. To bound (101), it is necessary to estimate the measure of
the intersection between tubular neighborhoods of level surfaces of the
kinetic energy function ex where the singularities of the resolvents in (101)
are concentrated. Because the level surfaces of ex are non-convex for the
three-dimensional lattice model, this is a much more difficult task than
in the continuum case, where the latter are spheres. After completing this
work, we learned that a similar but somewhat stronger estimate (with an
exponent —3/4 instead of —4/5) was proven independently in ref. 4.

We shall interpret the three-dimensional integral (101) as an average
over two-dimensional crossing integrals. Let

p=(p1.p2).  q:=(q1,q) €[0, 1]

2
exp(p) = Z cos2mp;
j=1

o (k) : (105)

B ifj=1
_c052nk+3—{a ifj=23,

so that

Ag(w; o, B) (106)
1

= dps/ d%/ dq ,
/[0,1] [0,1] 0,12 ~le2n(g —w) —a1(g3 —w3) +iel

1
X/ dp . — .
(0,12 ~leap(p) —aa(p3) —ielleap(p —q) —a3(p3 —q3) —iel

The level curves
sa:={pel0, 1F|e2n(p) =a} (107)

of the two-dimensional kinetic energy function e;p are convex, but there is
one exceptional value of the energy o =0 for which the corresponding level
curve sy—o 1s the union of four line segments of zero curvature. The lack
of curvature poses a well-known difficulty in two-dimensional lattice mod-
els. In three-dimensions, this problem is resolved through the average with
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respect to ps, g3 (relative to which small curvature is an event of small
probability).
Let

Ur = {(p3.q3)| @1(g3), 02(p3). a3(p3 — q3) ¢ (-7, 7)}
Ut =10, 11\U,, (108)

where 0 <7 < 1 remains to be optimized. Then, clearly,
mes{US} <C/T. (109)
Correspondingly, let
Ag(w; o, B)=(A) +(B), (110)

where

1
(A) :=/ dp3d613/ dq .
U, .12 ~leap(g —w) —ai(g3 —w3) +iel

1
x/ dp - —
012 ~leap(p) —a2(p3) —iglleap(p —q) —a3(p3 —q3) — i€l
(111)

and

1
(B) :zf dp3dq3/ dq .
e .12 ~leap(qg —w) —ai(g3 —ws3) +iel

1
x/ dp - — .
.1p ~leap(p) —aa(p3) —ielleap(p —q) —a3(p3 —q3) — i€l
(112)

Therefore, with (109),

(B) < Cﬁsup/ dq !

a; Joap ~leap(g —w) —ay +igl

1
X/ dp , ;
0.1 —leap(p) —on—ielleap(p —q) —as — i

2
C;/? <10g l) . (113)

&

<
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Next, we decompose (A) into (A)= (A1) + (Ay) with

x(e2p(q —w) —a1(g3 —w3)| <n)
(A1) 2=/ dp3dCI3/ dq = .
U, [0,12 leap(qg —w) —a1(g3 —w3) +ig

/ x(eap(p) —a2(p3)l <n)
X dp ,
012 — leap(p) —aa(p3) —icl

x(eap(p—q) —a3z(p3—qg3)|l <n)
leap(p —q) —a3(p3 —q3) — i€l

(114)

where 0 <7 <1 remains to be determined. Then clearly, the term comple-
mentary to (Ap) satisfies

2
(A7) <Cn~! (logé) , (115)

because the integrand of (A,) contains at least one characteristic function

of the form x (lexp(v) —;(v3)| >n), where v=(v, v3) denotes either g —w,

p, or p—gq. The corresponding resolvent can be estimated by n~!, while

the remaining two resolvents in (A4,) can be bounded in L' by c(log%)z.
To bound (A1), we note that

3
(4n < (2) n’3/ dpqu3/ dg x(le2p(g — w) — a1 (qs — w3)| <)
2 U, [0,1]2

x /[.0 1]2d£X(|€21)(£) —ax(p3)l<n) x(leap(p —q) —a3z(p3 —g3)| <n).
| (116)

let ,, denote a smooth bump function supported in a n-vicinity of the ori-
gin in [0, 11> (periodically continued over the boundaries), with

and

~C x| <n~!

<Clx|7 x| =07t (118

|F Ly ()] {

F denotes the Fourier transform, and x € Z? is the variable conjugate to
D, respectively g. Furthermore, let

87 (p) = hy*85,(p). (119)
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where &, (p):=d(eap(p) — ).
Choosing h, appropriately,

1
rlen(p) —al<n) < 5 (p) . (120)

Thus, letting Ty, f(g) := (g —w),

3
(A) < ()" sup sup /[01 dq 8" (g —w) f dps (P87 (p—a)

. Sy
lej|>t w

sup sup(Ty. 8(”) 5(’7) * 8(”))

(8) leej|>T w L2 . 1]
n\3 ) o) Q)
= (Z) |Sl\lp sup(f (T ) F- (3 7 )}— JCH )>€2(Z2
- (2)3 sup sup Y FH(Tud @) F 6@ F )W)
lejl>t w erz
n 3
= (g) |Sl‘lp sup Z f (hn)(_)) F- (T 8“& )(X)
=T L en?
X F 1 (85,,) @) F (85, ) ) (121)

by the Plancherel identity. Next, we observe that if |«| > t, the curvature
of s, C[0, 1] is uniformly bounded below by Ct, where the constant C is
independent of 7. We thus have the curvature induced decay estimate

1F (85, (@0) < C(z]x])72 (122)

which appears also in the context of restriction estimates in harmonic
analysis.(!9 To arrive at (122), one introduces a smooth partition of unity
1=Z§y=1gj on sy, which splits it into N arcs sq,j, j=1,..., N, with,
say, N =10. For fixed j, one introduces a local orthogonal coordinate
system (vi,vy) where the origin lies on s, ; (say at its center) with the
vj-axis tangent to s, ;. Then, sy ; is the graph of a smooth function
¢a,j(v1) With ¢g ;j(0) =0, 9y ¢q,j(v1) =0 and |a ¢a,j(vl)| >Crt. Let n:=
% =(n1,ny), where x € Z?, and let p ;. denote the location of the origin of
the v-coordinate system with respect to the p-coordinates. Then,

F (8,8 (0)

. 1 .
= / dvy (1+ By, 6a,j (1)) g (v) 77 1EIPas 001)
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where g;j(v1):=g;(vi, Pa,j(v1)), and
Dy, j(n,v1) :=n1v] +n2¢q,j (V1) . (123)

First of all, if x is parallel to the wvy-axis so that n; = 0, one has
|8v1q)oz,j(ﬂv O)' :O and

185 @4, (n,0)| > CT. (124)
Hence by a stationary phase estimate,
1
171, 8@ < Clrlx) 2. (125)

If x is close to being parallel to the wvs-axis, so that |ni| < C is suffi-
ciently small (independently of 7), one can find v; = vi(n), such that
0y, Do, j (1, v1(n))=0. This follows from an application of the implicit func-
tion theorem and (124). Moreover, by the assumption on the curvature of
Sy, We have |851 &y, j(n,v1(n))| > Ct. Therefore, (125) is valid for all x such
that |n;| < C is sufficiently small. If |n{|> C,

|8U1q)0(,j(ﬂ’ 'U])|>C,>O, (126)

since |0y, ¢q, j(v1)| = O(Jv1]). This implies an even stronger decay bound
than (125), by standard oscillatory integral estimates. Hence, we arrive at
(122).

Noting that

|F N (T8 @) = | F 1 (85 @)1, (127)

we obtain

< (1) X (F o) e

xeZ?

< C(—)31_7n% , (128)

w

due to (118).
We thus arrive at

2
Ae(w;a,,B)<C(g>31_%n%+C<n_l+g) <logé) . (129

4 2
5

Setting n=¢35, T=¢53, the claim follows. ||
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Lemma 3.12. Let 7 €1, ,, with n= '”é”/ €N, correspond to a non-
crossing pairing contraction that contains at least one nested subgraph.
Then,

|Amplr]| <& (CaZe ! logel)

Proof. In this case, 7 comprises a nested subgraph of length 1 <¢g <
n—2, and Amp[r] thus contains a subintegral

Jj+2g-2 |
Ny(a,e)d(pj+2 —P')Zf dpj---dpjiag—1 —_—
1 Jrea Ty s z=l]_u[rl ea(p)) —a—ie
q—1
X ]_[)»23(Pj+2k+2—17j+2k)
k=1
X?»ZS(P]'H—Pj+Pj+zq—Pj+2q—1>, (130)

where

25 -1
Nq(a,g):zsz gp A E@ &) (131)
T

300 (ea(p)—a—ie)’

Since its interior does not contain further nested subgraphs, we refer to it
as a simple nest, cf. Fig. 3. We note that pg, p,, pn+1, and pajiy1 can never
appear in the interior of a nested subgraph. It is clear that

_ 1 - 1
[Ny (e, 8)] < WATE (o)l l)mag I/m dp ea(p) —a—ie
32(en2)a-1
< L/ dssq_le_”(l%-s)_%
(@—D! Jr,
< (C)ng—l)qgg’ (132)

where we have used (75).

. — . .
Pi Py Piv2g-1 Pjr2g

g-1 immediate recollisions

Fig. 3. A simple nest.
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Without any loss of generality, let us assume that the simple nest has
length ¢ (i.e. it contains ¢ immediate recollisions), and that the momentum
with largest label preceding it is p;, with j+2g <n, so that the expression
corresponding to (130) is N;6(pj12g — pj)-

The contributions to Amp[n] stemming from the pairing contractions
outside of the simple nest can be estimated in the following way. There
are 2(n —q) momenta not contained in the nest, apart from those carry-
ing indices in J:={n,n+1, j+2q}. Let n’ denote the graph obtained from
7 by removing the simple nest together with the edges labelled by J. Let
T denote a spanning tree of 7w’ containing all of the contraction lines, and
in—q of the particle lines in 7’. The pairings supported on 7’ can be writ-
ten in the form

dp, 1
/(TS)"_q |:rle_T[c (ea(pr) —a, — iope)ti @ :| 1_[ (ea(ws) —ag — ia’sg)p'j(s) ’

seT

where each w, € T? is a linear combination of momenta p i, with joeT*.
Here, we have introduced p;(r):=146;, to accommodate the fact that
the edge labelled by j + 2g is excluded from =’. We correct this omis-
sion by using p;io, = pj, which is enforced by a delta distribution, and
by squaring the propagator corresponding to the edge with index j.

It then follows that |Amp[x]| is bounded by

(supwq(a, s)|)x2<"—q> f do| |dB|
IxI

ael

1
X dp
/1r3 " lea(pn) —a —ieli™len(py) — B +iel

1
X dp - . ]
~/(T3)ﬁ‘1 [ l_[ ' lea(pr) — o —l0r8|“f(r)

reTc

X ]‘[ ! (133)

seT lea(ws) —as — io’sgluj(s)

Since

1
Idalldﬂlf dp — :
/m ™ lea(pn) —a—ieli™lex(py) — B +ic]
< Cel =M logel?, (134)
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and
[ [T : ]
P B )
iyi-a L UL en(pr) — o —iope i)
1
X
E‘ lea(wy) —og — iasg|uj(s)

< (C|10g8|)ﬁ7(1872r5T“ 8j.r =2 ser i) (135)

we find

|Amp[]| < A7 (C|loge|)" 42! 71 W= Lrere dir—Dser 1) (Ce 1)/
< (CA%e N logee!/?, (136)

due to

w4+ iy i) =i—q+2,

refTc seT

where g > 2. This proves the lemma. ||

3.5. Type lll Contractions

We recall that the number of type III contractions m €1, , is super-
factorially large, bounded by 7#2". On the other hand, if 7 is of type III,
Lemma 3.13 below shows that |Amp[x]| is by some positive powers of
& smaller than the bounds on crossing or nesting pairing graphs. This will
suffice to balance the extremely large combinatorial factors against the size
of |Amp][n]].

Lemma 3.13. Assume that 1 <m <= %”/ €N, and 7 ={S;}]L, €
I, of type III. Then, for m=n—1,
|Ampl[r]| <e|loge|*(Ce™ 'A% loge])” (137)

while for all I<m<n—2,

|Amp[r]| < (cit)* 'A% e (C| loge)*" . (138)
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Proof. By assumption, the total number of blocks contained in the
contraction 7 is m, and we recall that the case m =n excluded here would
correspond to a pairing graph. After integrating out §(p, — pn+1),

2n ,2¢t

Ae 1 1

Amplr]l < / dal 4| / dpn . .
(2m) IxI T3 lea(pn) —a—ig| lea(pn) — B —ié€]

X / dpo---dpp,_1dppi2...dprit1
(’]1‘3)2)1

n—1 1 2n+1 1

X[g |eA<pj>—oz—ie|]zznl_£2 lea(pe) — B+iel

x [T lersyifss; (- (139)
j=1

Let J:=1{jl|S;|>2} denote the number of type III blocks in 7, hence the
number of pairings is m — J.

We consider the graph G, associated to the contraction 7. G, con-
tains one vertex from &(p, — puy+1), 2n vertices corresponding to V,, J
vertices in Vj,.(G) (cf. the definition in the second paragraph of Section
3.3), and we add two artificial vertices at the free ends of the particle lines
corresponding to the initial conditions (labelled by the momenta py and
P2i+1)-

Every type III block S; accounts for |S;| contraction lines, while for
a pairing block, there is only iz’l =1 contraction line. The total number of
contraction lines in G, is thus

Z|Sj|+(m—J)=2ﬁ—(m—J), (140)
jeJ

(since ) jers ISl +2(m — J)=2n is the total number of V,-vertices).

Let T denote a spanning tree of G, which contains all contraction
lines, the two particle lines belonging to the momenta p, and p;41, but
not the particle line that used to belong to p,y;. Clearly, T has 2n+2+J
edges, from which 2n+2+J)—2— (2rn— (m—J))=m belong to particle
lines different from those labelled by p, and pj;41. All particle momenta
associated to those particular edges of T can be expressed as linear combi-
nations of momenta not on 7T (they are used to integrate out all delta dis-
tributions). Accordingly, we estimate all propagators on T except for those
labelled by p, and psjy1 by their L°-norms. This yields a factor .
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We integrate the propagators labelled by p, and ps;4; against ¢ and
B, respectively, which yields a factor (clog %)2. Furthermore, we bound all
2n —m remaining propagators that belong to edges in the complement of
T by their L'-norms. This produces a factor (c logé)zﬁ”".
Finally, we derive from (46) that
m m 1.
TTleisl < [Taster)sir+!
i=1

j=1
271 e3¢V )31 (141)

~ 0~

<
for 1<m < —2, so that in this case,
|Amp[r]| < (Ci1) 1 (CA®) e~ | log e~ +2.

On the other hand, since ¢c; =1 by normalization,
i—1
l_[ |cis;1] = leal (142)
j=1

if m=n—1, so that
|Amp[7]| < |ea|(CA%) e~ | log g3 .

This proves the lemma. |
Proposition 3.1. For fixed n,n’, the sum of all contributions to the

expectation (57) that comprise type III contractions is bounded by

Z |Amp[r]] < (CA%e~ ! loge)?)” (ﬁ4(ft!)8 +fl5ﬁ82).
nell, v typelll

Proof. We note that the total number of graphs for 1<m<n—2 is
bounded by

N

-2
Bi(m) <2t
=1

m
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cf. the discussion of (42). In the case m=n—1, we find
Bi(i—1) <2 (ahi*,

since we have n — 1 pair correlations, and one correlation of order 4.
Application of Lemma 3.13 implies the claim. |

3.6. Estimates on the Remainder Term

In this section, we bound the expectation of the LZ-norm of the
remainder term Ry, in the Duhamel series (48). We shall use the partial
time integration method introduced in ref. 3.

The remainder term is defined by

t
Ry =—i / dse ' =Hoy oy . (143)
0

Let keN, 1<Kk <N, be a large integer to be chosen later. We subdi-
vide [0, f] into « subintervals with equidistant boundary points {f, ..., 6}
where 1) =0, 6, =t¢, such that

Kl Oj+1

Ry, =—iny e /000ty f dse iCm=Hoy gy o (144)

=0 0

Furthermore, we define
~ s ( ) ~
m-—n
¢m,n,9(5):=f dS/DS_S/ bm.s' s
0

where

(D™ @) (po) := (—in)™ /

Rn+l1

m
[ 1_[ ds]-] e—is0ea(po)
t
j=0
m

x /T} dpy -+ +dpu| [T e 0PV (p; = pj-)|Bs, (p) - (145)
(T=)m i
Jj=1

(f)m,n,g (s) is the m-th Duhamel term, comprising m collisions in total with
Vs, but conditioned on the requirement that precisely n collisions occur
before time 6.
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We then split the remainder term into
Ry, = Ri(t) + Ra(2) (146)

with

k—1
Ri(ty:=—ir Y Y e O oy, 50,0541,

N<n<4N j=0

1 a1 _ (147)
Ry(t):=—i Z e =041 Ho [ ds e 1= oy gun N, (5) -

X 0;

j=0 J

Ri(t) is obtained from further expanding the operators e !@i+1=9Ho ip
(144) up to 3N —1 times. Consequently, R;(¢) comprises Duhamel terms
for which up to 3N — 1 collisions occur in a time interval of length ﬁ
R>(t) is the corresponding error term, characterized by the fact that pre-
cisely 3N collisions occur in a time interval of that length.

Our aim is to establish that E[||R1,2(t)||%]= 0 (% for some 8§ > 0.
The estimates used to control E[||R1(t)||§] are essentially equal to those

employed for n < N. To bound ]E[||R2(t)||§], we exploit the rarity of events
comprising large collision numbers (of order O(N)) in the time intervals
[0;,6;_1) that are much shorter than [0, 7].

Lemma 3.14. There are finite constants C, uniform in e=¢"! and N,
such that

NZKZ(CA2871)4N
(N!)l/z
FN2A(CR 26 Tog eV | 1oge|3(s% (4N)! +52(4N)2°N),
(148)

E[IRI0)13] <

E[IR0)13] < e7(Ca% ! [loge)*" loge ]’
x (K*N(4N)! N 4N EN)

+K7N+982(4N)!(4N)8+83(4N)20N)_ (149)
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Proof. The Schwarz inequality and unitarity of e~*#e imply

E[IRiOB]<GN*? sup sup E[lignna, 0I5
N<n<4N 0<j<«

150
E[IRB]<e™ sup  E[lgav.na,@DI3]. (150

0 j<k
s€[0,0j11]

Let us first address the estimates on ||R2(t)||%.
Each pairing contraction occurring in E[ll¢an,n.0; (9j+1)||§] can be
bounded by

k NlogelP(CA%e [ loge)*V . (151)

The factor k" appears for the following reason. We recall that e~ =1 is
the length of the time integration interval [0, ], and that previously, ie has
appeared as the imaginary part of the denominators of the free resolvents
in the momentum space Feynman integrals. Due to the condition in R,(¢)
that all of the last 3N collisions occur in a time interval of length £<< t,
there are 6N out of 2(4N + 1) free resolvents, for which the imaginary part
of the denominator is ike instead of ie. ie appears only in 2N +2 of the
free resolvents, corresponding to the first N collisions.

For type III contractions, we argue as in the proof of Lemma 3.13.
We observe that if there is a single block of size 4 (that is, one delta con-
tracting four random potentials), we gain a factor ¢, and there are 2(4N +
1) — 4 free resolvents which are part of pairing contractions. The above
considerations apply to the latter, and there is a gain of a factor of at least
«~N+5 The number of type III contractions with only one block of size
4 is bounded by (4N)*(4N)!

For a type III contraction which contains two size 4 blocks or one
size 6 block, we gain a factor ¢2, and there are at least 2(4N + 1) —8 free
resolvents which are part of pairing contractions. By the above, we gain
a factor of at least x N+, The number of type III contractions with two
blocks of size 4 or one block of size 6 is bounded by (4N)3(4N)!

Any type III contraction with larger or more non-pairing blocks pro-
vides a gain of a factor &3, and we shall then not need inverse powers of
k. The number of such contractions, multiplied with the estimate derived
in the proof of Lemma 3.13 on the renormalized moments, is bounded
by ¢V (@4N)>N.
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Hence, we conclude that

E[ léa.v.0,6;DI3] < Ilogel (€32 loge )™
x (17N @N) N @) 1EN)?

N2 @NIAN) 423 @) 2N ),

where the first term on the right hand side of the inequality sign
stems from the sum over all pairing contractions, while the second term
accounts for all type III contractions. This proves the asserted estimate on
E[||R2(1)]|1*]. A more detailed exposition is given in ref. 3.

The bound on E[||R1(t)||%] follows from Lemmas 3.15, 3.16, 3.17, and
3.18 below. 1

3.6.1. Pairing Contractions

Let us first estimate the contributions to E[||R;(¢)|*] stemming from
pairing contractions. For simple and crossing pairings, the necessary
bounds on terms corresponding to n with N <n < 4N are precisely the
same as for n < N. The discussion of nested pairing contractions is slightly
more involved, due to the fact that particle propagators with different
imaginary parts +ie and +ixe can appear in the same simple nest.

Lemma 3.15. Let N <n <4N, and 22¢~1 < 1. The contribution to
(148) of the sum of all simple pairings is bounded by

C )L2 —1\n
E Amp[r] <%—l—ne%|10g8|3(Ce_1A2|10g8|)”,
n.

well, , simple

(152)

where Cy is defined in (96).

Proof. The proof is derived from the same arguments as in the
proof of Lemma 3.7. Here,

1 1

, < ,
lea(pj) —aj—iojke|l ~lea(pj) —a; —ioje|

(153)

is used for all j. |
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The remark after the proof of Lemma 3.7 concerning globality in
T =1t >0 also applies to the present situation.

Lemma 3.16. Let N <n <4N, and let = €11, , correspond to a pair-
ing contraction that contains at least one crossing. Then,

|Amp[r]| <e5|logeP(CA2e ™! [loge|)"

Proof. The proof is analogous to that of Lemma 3.10, and uses

(153). 1

Lemma 3.17. Let N <n <4N, and let = €I, , represent a non-
crossing pairing contraction that contains at least one nested subgraph.
Then,

|Amp[r]| < g [loge>(CA%e~ ! loge])" .

Proof. In the case N <n <4N, particle resolvents with imaginary
parts ie and ike in the denominator can appear simultaneously in the
same nested pairing subgraph. If so, Amp[n] contains a subintegral cor-
responding to a nest of the form

Ngi.q: (0, 8,6)8(Pig2g—1— Pi—1)

=% / dpi - dpiy2q-20(pi — pi—1+ Pit2g—1 — Pi+2¢-2)
(T3)24

q—1
X l_[ 8(pi+2j+1— Pi+2j—1)
j=1
N i+2g-2
1 1
_ B —— 154
X<H@A(Pl)_a_i8 H en(pr) —a —ike (154

I=i k=N+1

where for g1 +¢g>=¢g—1, and g1, q> > 1,

Ny, g, (at, 8, k) / d A2 (A2E(a, &) (V2 E(a, k)P
o,8,K)= ] / . /
.92 T3 pi (ea(p)) —a—ie)N1+d (ep(p;) —a —ike)d2t1—a
(155)
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with ¢’=0 or 1. Let us assume that ¢’ =0, the case ¢’ =1 is completely
analogous. Then,

(155) = A2 (2 E(a, €)' (A2 E (o, ke)) P

X/ dPi( ! 3:/1—1/ dspe~isealp)—aie)
T3 @ =D Jr,

Xiang dsze_isz(fA(Pi)—Ol—iks))
q>! R,
1 1
=17 _—(AZE(a, g))? (kz E(a, ke))e2
(g1 —D!g2!

x /2 dsi dsy(is)D(isy)®

Ry

x /;1‘3 dpie—i(Sl+S2)(6A(Pz)—0!)e—851—K852 . (156)

Using (75), the integral on the last line is bounded by

_ caitaz
/ dsi dsys]! lsgz—3 e ESITKES
Ry (1+s1+s2)2
e~ (@+a2—1/2) . cata e
<—/ dsidsysi'™ s ——— 7170
K02 R} (14s1)2
e—(@—3/2)
<———CM (g1 — D)(q2). (157)
K92
Therefore,
321 2.—1\q
el (Cre™)
INgy.q0 (s 8, 60) | < —————, (158)

K42

where (75) has been used. We note that in the special case g1 =0, gop=¢ — 1,
this is replaced by

(C871A2)q673/2

qu(a’K8)|<W’

(159)

cf. (132). For the assertion of this lemma, it is, however, not necessary to
take advantage of the small inverse powers in «.
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For the contractions outside of the nest, we proceed as in the proof
of Lemma 3.12 (where in (154), i:=j+1), and find

|Amp[r]| <e2|loge[*(CA2e~!|loge])" . (160)

This proves the lemma. |

3.6.2. Type lll Contractions

The estimates on type III contractions necessary for n > N are the
same as for n < N.

Lemma 3.18. Let N <n<4N, and let = €I1, , correspond to a type
IIT contraction. Then,

Z |Amp|[r]| <(CA2£_1|log£|)" ((n!)8+n5"82),
well, , typeIll

where the constant C is uniform in &, A, and n.

Proof. This is proved in the exact same way as Lemma 3.13. We
remark that subfactorial factors n*, 4", etc. have here been absorbed into
the multiplicative constant. ||

3.7. Completion of the Proof

Collecting the above, we are in the position now to prove the key esti-
mate (28), which concludes the proof of Lemma 3.3. Combining Lem-
mata 3.7, 3.10, 3.12, we find

ILh.s. of (28)] < C A%~
+(@NO2| logel*(Cr2e~Vlog e )*N (s% @N)! + 82(4N)20N)
+e72|logeP(CA%e ™ loge|)*N
x (K_N(4N)! NS @)@

N2 AN I(AN)S + 83(4N)20N> : (161)
where some subexponential factors, such as N4, etc., have been absorbed

into the multiplicative constants C in C*V, and where the constant C; is
defined in (96).
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According to the assumptions of Lemma 3.3, we have
6
el =r=571"2,

where 0 <8 <1 is given and fixed.
Furthermore, we choose

N ) |loge|
&= —F/7——1,
401log|loge|

k() = [|loge|"*7. (162)

One then easily verifies that

(4N (£))20N(E) < g=

2
4N (e))! <&~ 10 (163)
k(N ~ e,
such that for instance,

e 2k () NEO(UN () <&/, (164)

It can then be straightforwardly verified that for e sufficiently small,

<o
~i—

[Lh.s. of (28)] < C187 +e& (165)

This completes the proof of Lemma 3.3.

4. LINEAR BOLTZMANN EQUATIONS

We shall in this section study the Schrodinger dynamics of the ran-
dom lattice model analyzed above, and demonstrate that its macroscopic,
weak coupling limit is governed by the linear Boltzmann equations. Owing
to the similarity of many of the arguments used here to those presented in
ref. 3 for the continuum case, the exposition will be very condensed.

Let ¢, € £2(Z) denote the solution of the random Schrédinger
equation

10;¢: = Hopy (166)
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with initial condition ¢ € £2(Z3), and for a fixed realization of the random
potential. We define its Wigner transform Wp,: (Z/2)? x T3 — R by

We, (. 0)=8 Y ¢ (i (x)e™™ 0~ (167)

v,2€73
y+z=2x

where we note that x € (Z/2)3. Fourier transformation with respect to x
yields

Sy S VN
Wi 6, v) = (v— 2)¢, <v+ 2) , (168)

where veT? and & € (2T)3.

Let J denote a Schwartz class function on R? x T3. We introduce
macroscopic time, space, and velocity variables (T, X, V) := (nt, nx, v) for
n <1, and the rescaled, macroscopic Wigner transform of ¢,

Wi (X, V) =07 Wy, (X/1.V) (169)

with X € (Z/2)3, V € T3. Then, let

TRZEEY dVI(X, V)qu'fm X, V), (170)
3
Xxe(z/23 7"

while for the Fourier transform with respect to the first argument,

(W)= (J WPy = / dedviy(E. V)W, Ev), (171
2T)3xT3

where J, (€, v):=n"3J &/, v).

We shall write sin27w € [—1, 1] for the 3-vector with components
sin2rw;, j=1,2,3, where weT?.

Theorem 4.1. Let the scaling factor be fixed by
n=2%, (172)

where A is the disorder strength. Let ¢ =e‘”Hw¢(()”) denote the solution
of the random Schrodinger equation (166) with initial condition

¢(()’I) (x) — n3/2h(nx)eis(nx)/n , (173)
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where h, s are Schwartz class functions on R3.

Chen

Let W;") denote the rescaled, macroscopic Wigner transform of ¢,(").

Then, for any 7 >0, it has the weak limit

w = lim E[WS" (X, V)]=Fr(X, V),
}’]—)

where Fr(X, V) solves the linear Boltzmann equation

A Fr(X,V)+sin2nV -Vx Fr(X, V)
:/ dUo (U, V)[Fr(X,U)— Fr(X, V)]
T3

with collision kernel
o(U,V)=2mb(ea(U)—ea(V)),

and initial condition

Fo(X,V)=w —hmw(”) Ih(X)[28(V — Vs(X)).

Proof. For (177), we refer to ref. 3.
Let

z¢n,,

and

E [/Tw} dEdv Ty (&, V)W gain (&, v)} Z o

nn—

N

(174)

(175)

(176)

(177)

=y Y Amp; [x], (178)

! —
n,n/=0mell,

where

e [ asanTEdn (15 )i (s45
' T3 % T3 2

Ampj?7 [7] denotes the value of the integral corresponding to the contrac-

tion 7w €11, .
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Lemma 4.1. Let 7 €11, ,y, and 71:= ’”5”' €N. Then,

J,
Un,7n/ = Z Ampjn [JT]
well, s simple
+0((c,\2t log )" (log 1) (=3 + r—zfﬁﬁ)) , (179)

and for any simple pairing 7,

[Amp;, [7]] < (CA*D)". (180)

Proof. The only difference here in comparison to the L?-bounds pre-
viously considered is the presence of J,. We note that for the choice J, =
8(&), (178) reduces to ]E[||¢,mam|| » (23)] as treated earlier. The necessary mod-
ifications are straightforward, and the same estimates on Feynman ampli-
tudes enter as before, and as expressed in (179). For a detailed account on
these matters, we refer to ref. 3. |}

Let ¢ = %, as before. Similarly as in the proof of Lemma 3.7,
we decompose Ampjn[n], for m simple, into a main part Ampjs’main[n],
and an error part, where Ampjmmain[n] is obtained by replacing the
recollision terms Z(a, ¢) and E(B, —¢) in ArnpJ [7] by E(ea(vp),e) and
E(ea(vg), —¢). We assume for m that AmpJ [] "contains m type 11 con-
tractions, where we index the immediate recollisions by (g0,...,q9m) and

(qo, - --» qgm), respectively, as in (82). Then, we have

2m ,2¢t i a—p) _—
dadfe™"""*" déd

X[ do; dvm¢(’7)<n €>¢<n)( §)
(T3)m 2

Xﬁ (28 (ea(vp), )% (A2E(ea(vo), —))¥
o (eaui+5) —a—ie)ait! (ea(vi—5) — B+ig)iitl
(181)

Ampj,, ,main [JT] =

The error term is controlled by the following lemma.
Lemma 4.2. Let 7 €11, ,/ be a simple pairing. Then,

1Arﬂpj?7 [JT] :Ampj main[n] + O((C)th)fz t—%)

A 182)
(CA2H)™ (
| Ian maln[ ]|\ |)1/2 '
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Proof. The proof'is analogous to the one of Lemma 3.7, with straight-
forward modifications to accommodate for J,. This is treated in detail for
the continuum model in ref. 3, and we shall not reiterate it here. ||

We perform the contour integral with respect to the variables o and
B, and evaluate the sum over n,n’ €{0,..., N} by first summing over all
gi>qi, where i =1,...,m, for fixed m, and subsequently summing over the
indices m. We then obtain

N

I\IIiLHO Z Z Ampjn,main[n]

! —
n,n'=0 well,, v
7 simple

=y s / dvo d& J, (&, vo)
m=0

X/[]l:!)dsj}tl:l—[dsj} /T3)m v1~--dvmw¢én)($avm)

j=0
XeZtAZIm[E(vo,a)]e—l Yito (SieA(vi+§)+§i€A(vi—%)) , (183)
where
: ~(n) E\ §
W¢(()’7) (55 U) ¢ G ( 2)¢0n (U‘I‘ 5) )
and

1
Im[E (v, £)] = 5[E(vo, ) — E(vo, —8)].

To derive the macroscopic scaling and weak disorder limit, we introduce
the new time variables

Si TS SIS
2 2

aj =

with a; >0 and Z?=0aj =t, and b; €[—aj,a;j]. so that ds;ds; =2da; db;,
and

Siea (Uz’ - %) —Sien (Ui +%) =aq; |:€A (Uz’ + %) —ea (Ui - %)]
+b; [eA <vi — %) +ea (Ui + %>:| .
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Furthermore, we introduce macroscopic variables
To—nt—ne=' 1. —=na; -1
=nt=ne ", tji=naj, {=n &,

where we recall from (172) that the scaling factor and the disorder
strength are related by

n=»2%. (185)

We note that || < O(1) on the support of J (@, v).
For any finite 7;,

n i /n ) n
w— lim 1_[ / dbj eZZb/‘(eA(Uj)_eA(UO)+O(77)) _ l_[ 718(6A (Uj) —en (UO)) ,
=05 =/ =1

and by the same arguments as in ref. 3, we obtain

27TImE (vg)
rlll—I>nOE[<Jn’ (p(n) Z /W)n+l e
Z / [l_[dff]T H”S(EA(”/') —ea(vo))
j=0 j=1
x lim dé‘j(f,Uo)e2niz.’;=ofj£'5in2”vf
n—0J T/}
X W¢(n) m¢, v, (186)
0
where
E(U) = lim E(v,g), (187)
e—0

We observe that in the nth term of the sum, the factor n™", which emerges
from rescaling a;, has eliminated A2, due to (185). Moreover, using (177),

lim dé‘j({, Uo)ezm' i=0Tj Csm2anW (n)(ﬂ{ Un)
n=>0J@1/n)?

:fR} dXT(X, vo)Fo(X—ZOIj sin 2, uy). (188)
]:
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Thus, for any test function J(X, V), one obtains

lim lim E[(J, W ]=(J, Fr), (189)

main
n—0N—o0 LT N

where W(:Qain is the rescaled Wigner transform corresponding to ?ﬁi; N
-lr.N ’
and !
n
Fr(X,V)=ToW Z/drg o ~dt,,8<er — T)
n>0 j=0
X /dVl o dVyo(V, V) -0 (Vi—1, Vi)
n
xFo(X—th sin2nV;, Vn> ,
j=0
with V =V,. Here,
o(V,U):=218(ea(V) —ea(U)) (190)
corresponds to the differential cross-section, while
a(V)::/dUa(V, U)=-2Im[E(V)]. (191)

is the total scattering cross section. The key insight is that Fr(X, V) satis-
fies the linear Boltzmann equations (175), hence this result concludes our
proof of Theorem 4.1. |
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